Private Investigations

Or: everything you ought to know about private, public, protected
and published declarations but couldn’t find in the manuals

by Bob Swart

Delphi’s ObjectPascal model
supports the three corner-
stones of object oriented program-
ming: encapsulation, inheritance
and polymorphism. Encapsulation
is the combination of data (slots or
properties) and functions (meth-
ods or behaviour) to a class (or
object). Inheritance is the process
of building a hierarchy of classes,
with a descendant class inheriting
both data and functions from its
ancestors. In polymorphism, a
function declared in an class’s
ancestor is specialised in descen-
dants of this ancestor, thereby
refining the general action the
ancestor might take with special-
ised actions for the derived
descendant.

This article will focus on encap-
sulation. We’ll delve into the class
declaration syntax and semantics
with some examples. I'll also pro-
pose and illustrate some guidelines
for the use of private, public,
protected and published declara-
tions within Delphi classes.

Encapsulation

To illustrate encapsulation, let’s
consider a small example that will
be used throughout this article.
Consider a record TPerson with
three fields; Name, Birthday and Age
and a function CalculateAge. See
Listing 1 for the code.

Of course, the field Age from the
record TPerson can (and should) be
derived from BirthDay (and not the
other way around). That's why |
have also written the function
CalculateAge. In fact, | want to
strongly express my feeling that
the record TPerson and the function
CalculateAge belong together, so
I'd like to apply encapsulation to
put them together in one class.

Ifyoulook at Listing 2, I've encap-
sulated the record declaration for
TPerson and the CalculateAge

38

function in a new class TPerson. I've
changed the function CalculateAge
into a procedure, since the Age can
now be obtained from the class
itself. From now on, | will call the
field Age a calculated field: derived
from other fields in the class.

The encapsulation made the
internal fields BirthDay and Age
visible and automatically accessi-
ble for the procedure CalculateAge.
The new class is much like the
previous record with awrapper for
joining several (in this case one)
behavioural functions and data
properties together. In Listing 2, I'd
like to call CalculateAge right after
every time we give BirthDay a
(possibly new) value. So, we can be
sure thatthe fields BirthDay and Age
are always in sync.

0 Listing 1

Type
TPerson = record
Name: String;

Access

The class declaration of TPerson
contains everything a class decla-
ration should have, except access
or visibility specifiers. While
Borland Pascal, the ancestor of
Delphi’s Object Pascal, only distin-
guishes between public and
private access specifiers, Delphi
adds published and protected.

The four keywords published,
public, protected and private are
used within a class to denote
special access constraints for a
class declaration part. These
keywords operate both on data
and functions within a class.

Public
Class identifiers declared in the
public part do not have any special

BirthDay: TDate; { has Year, Month and Day subfields }

Age: Integer;
end {TPerson};

function CalculateAge(BirthDay, Now: TDate): Integer;

var Age: Integer;
begin

Age := Now.Year - BirthDay.Year;

if (Now.Month < BirthDay.Month) or ((Now.Month = BirthDay.Month) and

(Now.Day < BirthDay.Day)) then

Dec(Age); { no birthday this year }

CalculateAge := Age
end {CalculateAge};

0 Listing 2

Type
TPerson = class
Name: String;
BirthDay: TDate;
Age: Integer;

procedure CalculateAge(Now: TDate);

end {TPerson};

procedure TPerson.CalculateAge(Now: TDate);

begin

Age := Now.Year - BirthDay.Year;

if (Now.Month < BirthDay.Month) or ((Now.Month = BirthDay.Month) and

(Now.Day < BirthDay.Day)) then

Dec(Age); { no birthday this year }

end {CalculateAge};

The Delphi Magazine

Issue 6



restrictions on their scope, that is
everybody can access them freely.
If you want to make all data fields
and functions of the class TPerson
available to everybody else, just
use the public keyword

Type

TPerson = class

public
Name: String;
BirthDay: TDate;
Age: Integer;
procedure CalculateAge(

Now: TDate);
end {TPerson};

Now, if you have a variable Me of
type TPerson you can access the
field Age of Me via Me.Age. In fact,
everybody could access the field
Age of Me. This could result in a
situation where Age and BirthDay
are out of sync, even when | call
CalculateAge after each possible
update of BirthDay.

This leads to my first rule: never
make your “calculated” class
fields public!

Fortunately, there are other
access specifiers which come in
handy for this particular situation!

Private

Class identifiers declared in the
private part of a class cannot be
accessed from the outside. Unfor-
tunately, there is one exception:
from within the same source mod-
ule (unit or program) the private
identifiers are just as visible as
public identifiers. This is probably
done to enforce backwards
compatibility with Borland Pascal
class declarations, which also used
this rule. | prefer the C++ definition
of private, in which private identi-
fiers are truly invisible to anybody
(except friends, but that’s another
story). So, here’s our example:

Type

TPerson = class

public
Name: String;
BirthDay: TDate;
procedure CalculateAge(

Now: TDate);

private
Age: Integer;

end {TPerson};

February 1996

In Object Pascal, then, private
component identifiers act like
normal public component identifi-
erswithin the module that contains
the class type declaration, but
outside the module, any private
component identifiers are
unknown and inaccessible.

This leads to my second rule:
always put each class declara-
tion in its own unit!

As long as we follow this rule, we
can rest assured that private iden-
tifiers, such as Age, are indeed
private and invisible to anyone
except the class Tperson itself!

Ahem, didn’t we forget some-
thing? If all private identifiers are
indeed only visible to the class
itself, how do we get at the value
from the outside? Well, that’s
where access functions come in. We
just have to add a function GetAge:
Integer to the class TPerson that
returns the value of the private
field Age:

function TPerson.GetAge :
Integer;

begin
GetAge := Age

end {GetAge};

In general, for every private identi-
fier whose value needs to be
communicated to the outside
world, you should write an access
function. These GetXx functions
guarantee that only the value of the
private field is returned, while the
field itself is safeguarded against
improper updates!

Protected
Borland Pascal only offered the
public and private access specifi-
ers. With Delphi’s Object Pascal,
we now also have protected and
published.

The protected keyword com-
bines the advantages of the public
and private keywords. As with
private identifiers, you can hide
implementation details from end
users. However, unlike private
identifiers, protected identifiers
are still available to programmers
who want to derive new classes
from your classes without the
requirement that the derived
classes be declared in the same

The Delphi Magazine

unit (which we don’t want to do
anyway, right?).

So, if you want the class TPerson
to make the field Age available not
only to the class TPerson but to
descendants as well, you’d define
Age as protected instead of private:

Type
TPerson = class
public
Name: String;
BirthDay: TDate;
procedure CalculateAge(
Now: TDate);
function GetAge: Integer;
protected
Age: Integer;
end {TPerson};

Now, you can derive a new class,
say TAdultPerson, from TPerson,
which canstillaccesstheprotected
field Age! This is very useful,
although a thorough analysis must
be made between fields that can be
private and fields that should be
protected (ie accessible for descen-
dant classes). Sometimes this
involves a bit of trust...

Trust Me?

At this point, there are two choices
we can make concerning the
protection of our data fields in a
class declaration. The first one
(trusting) is to make all data fields
public, except for the “calculated”
data fields, which should be
protected. The second (fail-safe)
approach is to make all data fields
at least protected and make the
“calculated” fields private.

The first approach makes sure
no accidental discrepancies will
occur, but will allow any normal
access to everything. Thisisavery
open approach, which is best used
when you’re programming on your
own or with a small group of people
who have good communication
between each other.

| don’t say this without reason,
as I've often seen mistakes happen
from accidental misuse of data
fields in classes. Therefore, if you
really want to play it safe, or if you
have to work together with a rather
large or inexperienced group of
programmers, | can only recom-
mend the second (fail-safe)

39



approach: make everything at least
protected, and all “calculated”
fields private from the start.
Combined with the second rule |
gave earlier, this will safeguard all
data fields in your classes at all
times!

This leads to my third rule:
always make your data fields at
least protected!

With all the data fields at least
protected, we can rest assured that
nobody but ourselves (or our
descendants for protected data
fields) can modify them. This
should give us a safe feeling, as we
know that any inconsistency
within the class fields data will be
caused by our code and our code
alone!

In the class definition of TPerson,
I've now included the methods
SetName, GetName, SetBirthDay and
GetBirthday to communicate the
values of the protected data fields
Name and BirthDay with the outside
world. Since I've told you from the
beginning that we’d only call
CalculateAge whenever the value of
BirthDay changes, we can integrate
CalculateAge with the SetBirthDay
procedure, which leads to the code
in Listing 3.

This class definition gives me all
| need: protection for my data and
yet easy access for the outside
world! | can even put my pre- and
post-conditions inside the access
procedures and functions if | want.
Safety and convenience, all in onel!

Properties

I've used the fail-safe approach
described above for a long time
now. The only thing | don’t like
aboutitis that I always have to call
a procedure to set a new value or a
function to get the current value. It
may sound convenient at first, but
after a while it’s a real pain. Also, |
can’t help but wonder what the
overhead is in calling a method for
each access of an internal data
field.

Delphi’s Object Pascal now
offers a feature called properties
that can be used to extend the
fail-safe approach and solve some
of these problems. A property
looks to the user just like a class
data field, but internally can

40

encapsulate methods which read
or write the value of the field.

So, we can declare a property
Name of type String for our class
TPerson. The property definition
declares the field Name and the ac-
tions associated with reading and
writing the property Name:

Type
TPerson = class
private
FName: String;
protected

procedure SetName(
NewName: String);
function GetName: String;
public
property Name: String
read GetName
write SetName;
end {TPerson};

Note that we need an internal
(private!) field to store the actual
contents of the property. This field
is the name of the property with a
letter ‘F’ as a prefix.

The property itself can now be
seen as an alias to the user of the
class. From outside the class, the
property Name can be accessed as if
it was a normal public field of type
String. Thistime, we really do have
safety (all access to Name goes
through the SetName and GetName
methods, in which we can put my
consistency checking code) and
convenience (now everybody can
just assign to or from the property
Name)!

And just in case we don’t need
any consistency checks, we can
even skip the access methods and
wire the property directly to the
internal field itself. So we have no

O Listing 3

Type
TPerson = class
public

procedure SetName(NewName: String);

function GetName: String;

more consistency checks, but we
don’t have any overhead either!
And the user of the class doesn’t
notice anything (they have just
been using the same reference to
the property Name):

Type
TPerson = class
private
FName: String;
public

property Name: String
read FName write FName;
end {TPerson};

Which leads to the fourth possible
access specifier: published.

Published
The visibility rules for published
identifiers ina class are identical to
those of publicidentifiers. The only
difference is that run-time type
information is generated for fields,
methods and properties that are
declared in a published part. This
run-time type information enables
an application to dynamically
query the fields, methods and
properties of an otherwise un-
known class type. Furthermore,
the Delphi IDE uses a component’s
run-time type information to
determine the list of properties
shown in the Object Inspector.
Since properties can be used as
a kind of developer and user inter-
face to our class, it makes sense to
always use properties for any data
fields in classes. These properties
will be published, so anybody can
easily access them from either
outside the class or the Object
Inspector (if you should want to
make your class areal component).

procedure SetBirthDay(NewBirthDay: TDate);

{ calls previous CalculateAge }
function GetBirthDay: TDate;
function GetAge: Integer;
protected

Name: String;

BirthDay: TDate;
private

Age: Integer;
end {TPerson};

The Delphi Magazine

Issue 6



This leads to my fourth rule:
always use published properties
for data fields, based on private
internal fields and protected
access methods!

Which leads to the class declara-
tion for TPerson in Listing 4 (note
that we need to derive from
TComponent in order to use the
published keyword - a little
undocumented ‘feature’ of Delphi).

Note that for the Age property we
only have a read method, as Age is
aread-only property! The one thing
that’s missing from this approach

0 Listing 4

Type
TPerson = class (TComponent)
private
FName: String;
FBirthDay: TDate;
FAge: Integer;
protected

is the “Now” date, which must be
available when we calculate the
value of the FAge field. Fortunately,
we can ask the operating system
for the current date, so we’ll just
step over this little problem and
focus on the design task itself
again.

Dependencies

The last step you can take is to
dissolve all hidden dependencies
or calculated fields. Since Age
depends on the value of BirthDay,
why store the value of Age inside

procedure SetBirthDay(NewBirthDay: TDate);

{ calls previous CalculateAge }

function GetBirthDay: TDate;
function GetAge: Integer;
published

property Name: String read FName write FName;
property BirthDay: TDate read GetBirthDay write SetBirthDay;

property Age: Integer read GetAge;

end {TPerson};

O Listing 5

Type
TPerson = class (TComponent)
private
FName: String;
FBirthDay: TDate;
protected

procedure SetBirthDay(NewBirthDay: TDate);

{ calls previous CalculateAge }

function GetBirthDay: TDate;
function GetAge: Integer;
published

property Name: String read FName write FName;
property BirthDay: TDate read GetBirthDay write SetBirthDay;

property Age: Integer read GetAge;

end {TPerson};

{ The implementation of the property access methods is as follows: }
procedure TPerson.SetBirthDay(NewBirthDay: TDate);

begin
{ we can do some checks here }
FBirthDay := NewBirthDay;

end {SetBirthDay};

function TPerson.GetBirthDay: TDate;
begin

GetBirthDay := FBirthDay;
end {GetBirthDay};

function TPerson.GetAge: Integer;
var Age: Integer;

Now: TDate;
begin

{ somehow, get the value of Now: TDate }

Age := Now.Year - FBirthDay.Year;

if (Now.Month < FBirthDay.Month) or ((Now.Month = FBirthDay.Month) and

(Now.Day < FBirthDay.Day)) then

Dec(Age); { no birthday this year }

GetAge := Age
end {GetAge};

February 1996

The Delphi Magazine

the class? Why not calculate the
value of Age each time we access
the property Age (and make an
implicit call to GetAge)? That means
the internal field FAge can be omit-
ted and the access method GetAge
has to be modified to contain the
original CalculateAge code. The
final version of TPerson is defined as
in Listing 5.

Properties are a natural exten-
sion of fields in a class. Both can be
used to express attributes of a
class, but whereas fields are
merely storage locations which
can be examined and modified at
will, properties provide greater
control over access to attributes,
they provide a mechanism for as-
sociating actions with the reading
and writing of attributes and they
allow attributes to be computed.

Conclusion
We’ve explored the Delphi class
declaration syntax and semantics
with some examples. We've also
examined class access specifiers
and some rules and guidelines for
the usage of access specifiers
within Delphi classes. Finally,
we’ve seen the great use of Delphi
class properties. The rules I've
given are (in summary):

O Never make your “calculated”
class fields public;

O Always put each class declara-
tion in its own unit;

O Always make your data fields at
least protected;

O Always use published proper-
ties for data fields, based on
private internal fields and
protected access methods.

My final recommendation is to use

Delphi and properties as much as

possible, and have fun!

Bob Swart (you can email him at
100434.2072@compuserve.com) is
a professional 16- and 32-bit
software developer using Borland
Delphi and sometimes a bit of
Pascal or C++. In his spare time, he
likes to watch video tapes of Star
Trek Voyager with his almost two
year old son Erik Mark Pascal.

41



	Encapsulation
	Access
	Public
	Private
	Protected
	Trust me?
	Properties
	Published
	Dependencies
	Conclusion

